

Membrane Bioreactors 101

Marie-Laure Pellegrin, Ph.D. marie-laure.pellegrin@hdrinc.com

National Operators Trainers Conference June 11, 2008

WEFPRESS
For the Water Quality Professional

Membrane Systems for Wastewater Treatment

WATER ENVIRONMENT FEDERATION (WEF)

Membrane Filtration Basics

What is a Membrane?

Separation device like a clarifier to separate suspended solids from the water

Physical barrier: suspended solids bigger than pore size remain in the process tank Mixed Liquor

MLSS 5,000 – 14,500 mg/L

Permeate

TSS < 1 mg/l Turbidity < 0.2 NTU

Membrane Filtration Spectrum

Typical Types of Membranes: Hollow Fibers

ypical Types of Membranes: Flat Plate and piral Wound

Membrane Surface Area (A)

Total surface area across which mixed liquor is filtered

- Example:
 - 2 membrane tanks (MT)
 - 4 cassettes per tank (C)
 - 3 modules per cassette (M)
 - Each module has 200 ft² of membrane surface area (S)

$$A = MT * C * M * S = 2 * 4 * 3 * 200 = 4,800 ft^{2}$$
 available for filtration

Instantaneous Flux J_T

 Instantaneous flow across membranes (as measured by flow meter) per membrane surface area (gfd = gpd/ft2)

Example:

- Instantaneous flow: 40 gpm
- A: 4,800 ft²

$$J_T = Flow / A =$$

[40 (gpm) * 1440 (min/d)] / 4,800 (ft²) = 12 gfd

Instantaneous Flux Normalized with Temperature

 Instantaneous flux J_T corrected for water viscosity based on temperature. Normalized for 68°F (20°C)

Example:

- $-J_{11} = 12 \text{ gfd at } 11^{\circ}\text{C}$
- Viscosity at 20° C = μ_{20} = 1 centipoise
- Viscosity at 11° C = μ_{11} = 1.24 centipoise

$$J_{20} = J_{11} * \mu_{11}/\mu_{20} = 14.9 \text{ gfd}$$

TransMembrane Pressure (TMP)

 Pressure across the membrane surface or headloss through the filter (psi)

TMP = feed pressure (P0)
- permeate pressure (P)

Membrane Wall

Permeability

Flux divided by TMP (gfd/psi)

- For example:
 - $Flux J_{20} = 14.9 gfd$
 - -TMP = 3 psi

Permeability = J_{20} / TMP = 14.9 / 3 = 5 gfd/psi

Fransmembrane

PSI

- Particulate/colloidal: pore blocking, cake layer formation
- Organic
- Biofouling: attachment of microorganisms, biofilm formation

Effects:

- TMP increase (or flux reduction)
 caused by adsorption,
 deposition/build up of contaminants
 on/in the membrane
- Fouling controlled by membrane cleaning

BioFilm and Biohydraulics

 BioFilm: thin layer of sludge on the membrane surface

• Biohydraulics: interrelationship between the biological process and the membrane hydraulic characteristics (term developed by Enviroquip)

Relaxation

- Completely Automated
- Every 12 minutes to reduce solids buildup on membrane surface
- 60 s duration
- Filtrate pumps are stopped
- Relieves solids tension on membrane surface so they are scoured away

Backwash

- Completely Automated
- Using periodically to reduce solids buildup on membrane surface
- Reverse flow utilizing filtrate pumps

Backwash

Maintenance Clean

- Completely Automated
- Every 1-2 week(s)
- Air stays ON
- Mixed liquor pump is stopped
- Mixed liquor remains in tank
- Protocol:
 - Backwash with chlorine (200 mg/L)
 - Relaxation for 15 minutes
- 30-40 minutes duration
 - Inhibits biological surface fouling

Backwash with chlorine

Relaxation

CIP or Clean In Place

- Automated no membrane removal
- Every 3 months or if TMP > 35 kPa at average design flux or permeability < 80 LMH/bar
- 4-24 hours per membrane cell
- Mixed liquor is sent back to biological tanks
- Utilizes chlorine at approximately 1,500 mg/L
- Occasional acid cleans for inorganic fouling
- Used CIP solution is wasted or recycled within the plant (job specific)

Other terms

- Filtrate (or permeate): Treated water or effluent from the membranes.
- Integrity Test: Test allowing leak identification on the permeate side (piping and membranes)
- Time To Filter (TTF): amount of time required to filter a fixed volume of sludge through a filter paper

Membrane Equipment Description and Functions

Fine Screen

Poor prescreen will cause fibers and debris to be trapped in fiber bundles restricting movement and impacting membrane performances and maintenance and cleaning frequency

Influent Screen Don'ts

Plugged With Large Debris

Surface Area Clogged Due to Inadequate Spray System

Unsafe
Working
Conditions

Tools Needed for Successful Implementation

- Compressor Selection Criteria:
 - Efficient removal of water, oil or other debris that could enter the compressed airlines
 - Carefully choosing where to install each piece of equipment (water traps, oil filters ...)

Membrane System Don't's

Air Guides Broken, Missing, and Pieces Found Blocking Air Slots

Questions?

marie-laure.pellegrin@hdrinc.com

